

Age of Ground Water in the Kanawha-New and Allegheny-Monongahela River Basins

West Virginia District USGS-WRD
National Water Quality Assessment
Mark D. Kozar, Hydrologist

Introduction

- * Wells were sampled for chlorofluorocarbons (CFC's) from the Appalachian Plateaus Physiographic Province within the Kanawha-New and Allegheny-Monongahela River Basins of West Virginia, Maryland, and Pennsylvania.
- Wells sampled were primarily domestic homeowner and small public supply wells.
- * CFC data was used to compute the age of the ground water in the wells sampled.

CFC Ground Water Age Dating

- * Chlorofluorocarbons (CFC's) were developed in the 1930's.
- * CFC production and use has steadily increased since they were developed.
- * First detectable concentrations of CFC's in the atmosphere occurred around 1940.
- * CFC's can be used to date ground water.

Henry's Law

- $+ C_i = K_h \times P_i$ where
- * C_i is concentration in equilibrium with air in pm/kg (picomoles per kilogram.
- * K_h is the Henry's Law constant, and
- * P_i is the partial pressure of a gas in air. P_i is expressed as a volume fraction in parts per trillion (pptv).

Topics of Discussion

- How Old is Ground Water in the Kanawha-New and Allegheny-Monongahela River Basins?
- * What Factors Affect the Age of Ground Water in the region?
- How does mining affect age of ground water in fractured bedrock aquifers?

Age of Ground Water in the Kanawha-New River Basin

- * Water from hilltop wells ranged from 11 to 19 years and averaged 13 years in age.
- * Water from hillside wells ranged from 10 to 42 years and averaged 29 years in age.
- Water from valley wells ranged from 19 to >57 years and averaged 42 years in age.

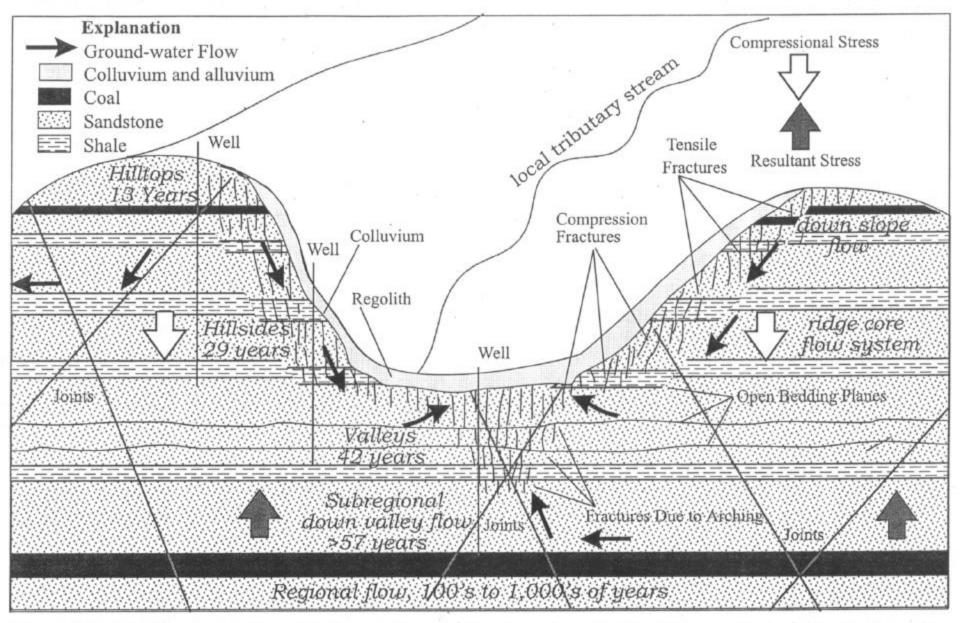


Figure 3. Revised conceptual model of ground-water flow in an Appalachian Plateaus fractured-bedrock aquifer including apparent age of ground water (Modified from Wyrick and Borchers, fig. 3.2-1, 1981 and Kozar, 1998).

Age of Ground Water in mined areas of the Kanawha-New River basin

- * Hilltop wells could not be located for sampling as that portion of the hydrologic flow system typically is disturbed.
- Water from hillside wells ranged from 10 to 47 years and averaged 27 years in age.
- Water from valley wells ranged from 4 to >58 years and averaged 32 years in age.

Age of Ground Water in mined areas of the Allegheny-Monongahela basin

- * Water from hilltop wells could not be located in that portion of the hydrologic flow system which typically is disturbed.
- * Water from hillside wells ranged from 11 to 57 years and averaged 30 years in age.
- * Water from valley wells ranged from 13 to >57 years and averaged 29 years in age.

Factors Affecting Age of Ground Water in the Region

- * Topographic Setting (Water from valley wells is oldest, from hilltop wells is youngest, and from hillside wells is intermediate in age).
- No other factors including well depth, well yield, length of casing, water level, and distance from recharge area were found to be correlated with ground water age.

Possible Factors Affecting Age of Ground Water in Mined Areas

- * Lack of distinct topographic effects in the Allegheny-Monongahela basin may be due to lower relief and/or rolling topography.
- * Surface mining may have altered normal ground-water flow patterns.
- * Younger age of ground water in mined areas may be reflective of increased ground-water flow velocity due to enhanced permeability.

What this Means

- Ground water in the region is much older than previously thought.
- Ground-water travel times within the region are therefore much longer than previously thought.
- * Surface mining may alter natural ground-water flow processes resulting in increased ground-water flow velocitiy (younger age).

Implications and Applications

- * Conceptual models of ground water flow in fractured bedrock aquifers of the Appalachian Plateaus need to be revised based on the information revealed by CFC age dating.
- * Regulations designed to protect ground water resources must address longer travel and residence times for ground water in fractured bedrock aquifers of the region.

Future Considerations

- * Additional data is needed to understand ground-water flow and age of ground water in deeper portions of the Appalachian Plateaus aquifers, especially in fractured bedrock below ridge tops.
- * CFC data is also needed in areas of active surface and underground mining, especially in hilltop settings.

